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Momentum transfer in complex plasmas
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Momentum transfer in complex plasmésystems consisting of ions, electrons, neutrals, and charged mac-
roscopic graingis investigated assuming an interaction potential between the charged species of the screened
Coulomb(Yukawg) type. Momentum transfer cross sections and rates are derived. Applications of the results
are discussed; in particular, we classify the possible states of complex plasmas in terms of the momentum
transfer due to grain-grain collisions and its competition with that due to interaction with the surrounding
medium. The resulting phase diagrams are presented.
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[. INTRODUCTION tering is applicable only for electron-grain collisions, while
) . . for ion-grain and grain-grain collisions, different approaches
Complex plasmas consist of ions, electrons, highlyshoyid be used. Based on numerical calculations, the re-
charged micron-sized particlgdust graing, and neutral gas. gyired approaches are developed, the role of finite grain size
Depending on the strength of the interacti@oupling be- s inyvestigated, and analytical approximations for the
tween the graingwhich can be easily varied experimentally momentum-transfer cross sections are proposed. The latter
over a fairly wide range complex plasmas can exhibit prop- 416 ysed to estimate the characteristic momentum-transfer
erties c_)f crystals, liquids, and' gases. In addltlop, the overallies in complex plasmas. This provides us with a unified
dynamical time scales associated with the grain componenfeqry of momentum transfer in complex plasmas in the pair
are relatively long and the grains can be easily visualized.q)jision approximation.
The unique feature of observing kinetic properties in real gome direct applications of the results are considered.
space and time provides the opportunity to study generig;rst we briefly discuss calculations of the electron and ion
universal processeg.g., phase transitions, crystallization, graq forces. Then we develop criteria to classify the possible
relaxation to the final equilibrium state, self-organization andgiates of complex plasmas in terms of the momentum trans-
scaling in fluid flows, transition from “matter” to particles, tgr |n particular, we identify the conditions for different
etc) in a detail not possible so far, and at a more fundamengates: ideal and nonideal plasma, as well as two different
tal _Ievel. For the current state of the field, see the recentynes of granular medium. Finally, we investigate the hierar-
review paperg1-9. _ , chy of the momentum transfer in grain-grain and grain-
The momentum exchange between different species playssral collisions and show that complex plasmas can exist
an exceptionally important role in com_p_lex pla_smas. For eXin a broad range of dynamical states: one- and two-phase
ample, the momentum transfer in collisions with the neutraky,jgs and tracer particles. The obtained results can be impor-
gas “cool down” the system, in particular grains and ionS,ian¢ for “engineering” experiments which aim to make use of
introducing some damping. The forces associated with th%pecial properties of complex plasmas.
momentum transfer from electrons and ions to the charged
grains—i.e., the electron and ion drag forces—often deter-
mine static and dynamical properties of the grain component, II. MOMENTUM-TRANSEER CROSS SECTION
affect wave phenomena, etc. The momentum transfer in
grain-grain collisions and its competition with the momen-
tum transfer in grain-neutral gas collisions governs grain  We consider pair interactions and assume ballistic trajec-
transport properties, scalings in fluid flows, etc. While vari-tories of particles during collisiong.e., we neglect any type
ous aspects of electron-ion interacti@ollisions as well as  of multiple collisiony. We assume a Yukawa potential for the
electron, ion, and grain collisions with neutrals have beennteraction between charged particles in complex plasmas,
well studied, comparatively little work has been done on
grain-electron, grain-ion, and grain-grain collisions. U(r) == (Ug/r)exp(=r/\), (1)
: _In th_is paper, we report on a det?‘"ed analysis of the COI'WhereU0>O for attraction andJ,<<0 for repulsion. We also
lisions involving dust grains. Assuming a screened CoulomRse axwellian velocity distribution functions for all spe-
(Debye-Huckel or Yukawainteraction potentialattractive o5 These assumptions allow us to simplify the calculations,
or repulsivg, the momentum-transfer cross sections for paify + e should bear in mind that not all of them are neces-
collisions of particles are calculated. We show that for typi'sarily satisfied in reality. A few examples are as follows:
cal complex plasma parameters, the theory of Coulomb scafjaiation of grain potential from the Yukawa forfh,6,8,10,
dependence of the grain charge on intergrain distd8te
destruction of ballistic trajectories by collisions with neutrals
*Electronic address: skhrapak@mpe.mpg.de [11], etc. Nevertheless, in many cases this simple model does

A. Approach
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provide reasonable predictions and hence it can be consig@lectron and grain-ion collisions, andy| ~ Z%€? for grain-
ered as the basis for more sophisticated models. grain collisions, we get the following hierarchy of character-
We consider a collision between two particles of massesstic scattering parameterg) EIectron—grainco_llisions,,Bfﬁd
m, andm, interacting via an isotropic potential of the form ~ z(a/\)~0.01-0.3;(ii) ion-grain collisions,ﬁ$~27(a/)\)
of Eq. (1). This problem is equivalent to the scattering of a~1-30; grain-grain collisions, %~ zy(a/\) ~ 10*-3x 10%.
single particle of reduced masg=mm,/(m;+my), in @  Here the subscriptT” stands for the thermal velocity
field U(r) (whose center is at the center of masses of the=\T/m, with T and m the temperature and the mass of the
colliding particles. First, we study the case of pointlike par- lightest species, and anda are the grain charge number and
ticles. The role of the finite grain size will be addressed latergrain radius, respectively. We have used the following di-
The momentum-transfescattering cross section is given by mensionless parameters:|Z|e?/aT,, grain surface potential
(see, e.0.[12)) in units of electron temperature;=2%e?/aTy=2Z|(T./Ty),
o normalized potential energy of two dust grains which are just
0= ZWJ [1 - cosx(p)]pdp, (2)  touching; andr=T,/T;, electron-to-ion temperature ratio. We
0 also assumed~1, 7~ 10, a/A~0.01-0.3 2|~ 10% and

wherep is the impact parameter andis the deflectior{scat- 24=2|Z|7=10" (for T4=T)), which is typical for complex plas-

: i .mas.
tering angle_. The latter depends on the impact parameter in These estimates show that the scattering is typically short
the following way, x(p)=|m—2¢(p)|, where ¢(p)

- _ : range only for electron-grain collisions. At the same time,
— P2 i2 — 2/p2 Oy TOT . . . o >
=pJ; drr '[l Ueff(ry.P)] andUeﬁ(rl,P)—P Ir +U.(r)/.'°‘ IS scattering in ion-grain and grain-grain collisions is long
the effective potential energylormalized by the kinetic en-  range, and the theory of Coulomb scattering fails to describe
ergy e=uv</2). The distance of closest approachip), i such collisions. In connection with ion-grain collisions, this

the integral above is the largest root of the equation issue was recently discussed in detail in REf8—1§.
Uer(r,p) = 1. ()
Using these expressions, can be calculated for arbitrary C. Calculations for pointlike particles

potential U(r). ]
We calculated numerically the momentum-transfer cross

sections for3 in the range from 0.1 to £Qboth for attractive
_ _ . o and repulsive Yukawa potential. First, the dependence of the
For the Yukawa interaction potential, the following impor- scattering angle on the impact parametép), was obtained.

B. Scattering parameter

tant dimensionless parameter can be introdJd&e-14: Then, Eq.(2) was numerically integrated vyielding the
_ 2 momentum-transfer cross sections. The results are presented
Blv) =[Uollpvr, @ i Figs. 1 and 2.
which is the ratio of the Coulomb radiuB-=|Ug|/ uv?, to The scattering anglg(p) decreases monotonically for re-

the screening length\. It characterizes the “scattering pulsive interactions for alB. In contrast, for attractive inter-
range”: The scattering is “short range” when the characterisactions a monotonous decrease of the scattering angle is ob-
tic distance of interactionRy~R., introduced through served only forg=<1, while for 1<8=<p. it becomes a
|[U(Ry)|=¢, is shorter than the screening length, i.e., whemnonmonotonous function gf, and at3> .= 13.2 the scat-
B(w)<1. In the opposite limit,B(v)>1, whenRy>\, the tering angle diverges at “transitional” impact parameier
scattering is called “long range.” Also the normalized =~ /5’+1—%In‘1,8). The divergence of the scattering angle
momentum-transfer(scattering cross section,o/\?, de- for attractive interactions arises from the barrier in the effec-
pends only on3 [15—-17. Hence,B(v) is aunique parameter tive potential energW., which emerges aB> B.. Note
which describes momentum transfer for Yukawa interactionsalso that when3<1, the trajectories are mainly deflected
Note that the theory of Coulomb scattering, which as-within the Debye radiugat p/\ <1). In the opposite case
sumes an unscreened Coulomb potential and a cutoff g#>1, the scattering angle can be substantial evempfoi,
Pmax=\ in the integral(2), is widely used to describe mo- both for repulsive and attractive interactigithis is another
mentum transfer in collisions between charged parti@es, demonstration of the fact that the Coulomb scattering theory
electron-ion collisions in plasmasit holds for R-~R,<\ is inapplicable for3=1, as discussed aboye.
or B<1,i.e., in the limit of short-range scattering. However, The results obtained for the momentum-transfer cross sec-
for B=1, the theory of Coulomb scattering is not applicable:tion (Fig. 2) show the following features: The cross section
In this case, the scattering ranBgis larger than the screen- for the attractive potential is always larger than that for the
ing length and a considerable fraction of the interaction ocfepulsive potentia{they converge in the limit of short-range
curs outside the Debye sphere providing substantial contriscattering8<1). The cross section for the repulsive poten-
bution to the momentum transfer. The use of a cutoff atial grows monotonically, while for the attractive potential a
pmax=\ considerably underestimates the momentum transfdocal maximum and minimum appear ngé S.,. This non-
in this case13-14. monotonic behavior is a consequence of the bifurcation
Now let us estimate the characteristic values of the scatwhich the scattering anglg(p) experiences in the range 1
tering parameter for different types of collisions involving < B= . It is also clear from Fig. 2 that the Coulomb scat-
dust grains. Taking into account thid,| ~ |Z|€? for grain-  tering theory(shown by the dotted lineconsiderably under-
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FIG. 2. (Color onlin@ Momentum-transfer cross sectioor,
normalized tom\? (where\ is the screening lengthvs the scatter-
ing parameteB. The upper data are for attractive and the bottom
data are for repulsive screened Coulomb potentials. Crosses corre-
spond to our numerical calculation, circles are numerical results by
Hahnet al. [20], and triangles are numerical results by Lane and
Everhart[17]. Solid curves correspond to the following analytical
0 LT . expressions: 1, Eq8); 2, Eq.(9); 3, Eq.(6). The dotted line cor-
0 2 4 6 responds to the Coulomb scattering thefiEg. (5)]. All the results
p/A are for pointlike particles. Vertical dashed lines conditionally divide
the B axis into three regiong8<1 is typical of electron-grain col-
FIG. 1. (Color onling Scattering angley vs the normalized Jisions; 1< 8=<30 is typical of ion-grain collisions8> 1 is typical
impact parametes/\, where\ is the screening length. The numeri- of grain-grain collisions. For details, see text.
cal calculations for a repulsivi@) and attractiveb) Yukawa inter-
action potential are plotted for three different scattering parameters _ _
B=0.3, 3, and 30. The vertical dotted line @ 4.2 in (b) indi- a§om? = (R/NT1+%(3-4In2 +0(%)].  (6)
cates the transitional impact paramegerat which x diverges.

For the Yukawa potentialy,=1+R,/\. Figure 3 shows the

dependence of the interaction radRgon B [obtained from

estimates the cross section for both repulsion and attractiopq. (3) for p=0]. One can see tha®,>\ for g>1 and

wheng=1. hencey,> 1. We note that for the Yukawa interaction poten-
Now we consider different limiting cases when an analyti-tja|, a rapidly converging analytical solution f&(3) can be

cal description for the momentum-transfer cross section igptained. Keeping only the first two terms of the expansion,

possible. we get

Repulsive potentialn the limit of short-range scattering,
the Coulomb scattering theory is applicable as discussed RN =1In2B8-1Inln28. (7)
above. The well known expression for t@®ulombscatter-
ing cross section For very largeB, the first term is dominant so thd®,

=\In2pB.
Uglmzz 28%In(1 + 1/6?) (5) Attractive potential.For short-range scattering3<1),

is shown by the dotted line in Fig. 2. F@=1, Eq.(5) is no ¢
longer applicable, however an asymptotic analytical approxi-
mation for the cas¢gg>1 can be obtained as follows: The o
parameteB characterizes the “steepness’ of the Yukawa po-
tential. The relevant characteristic of the steepness is the pa- §=
rametery,=|dIn U(r)/dInr|,_g, which is roughly the ratio sl
of the interaction radiu®, to the depth of the interaction
“shell.” Depending on a value of,, the potential can be
called “hard”(yy>1) or “soft” (yy<<1). Physically, the case 0

%> 1 corresponds to a rapidly decreasing potenti@l), so 10° 10° 8 1¢

that the momentum is mostly transferred in a spherical

"shell” of radius Ry and thickness-Ry/ yo. Hence, the scat- FIG. 3. The normalized interaction radi@/\, where is the
tering resembles that of a hard-sphere poteiffi§]. For an  screening length, vs the scattering paramedefor the screened
arbitrary potential, the expansion of theard-sphere Coulomb potential. The solid line corresponds to the exact solution
momentum-transfer cross section over the small parameter Eq.(3) with p=0, the dashed line shows an approximate solution
yal yields[19] given by Eq.(7).
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the theory of Coulomb scattering is applicable. The D. Role of finite particle size
momentum-transfer cross section is the same as for the re- \we consider the collision of twespherical particles in-

pulsive potential and is given by E¢). It was shown re-  teracting via a Yukawa potential and havifigite radii (b,
cently py Khrapalet al.[13,14 that even for moderatﬁ the and b,). The problem is equivalent to the scattering of a
extension of the standard Coulomb scattering theory is POSsointlike particle at the center of radibs:b, +b,, i.e., a new
sible by taking into account collisions with impact param-|ength scale enters the problem. In contrast to the case of
eters abova. In Refs.[13,14, the maximum impact param- pointlike particles, where the scattering is described by the
eter is determined by taking all the trajectories with asingle parametes, we now have a second paramete. If
distance of closest approach shorter thanto account. The  ihe distance of the closest approack), is smaller tharb,
definition of the maximum impact parametg@utoff) then  {hen the directtouching collision takes place.
becomes(pma) =N\ instead ofpya=N (note that both defi- For the repulsive interactiogelectron-grain and grain-
nitions are equivalent in the limiB<1). This leads to a grain collisions, the orbital motion limited OML) approach
modification of the Coulomb |Ogarithm. Thaodified Cou- [22,23 is a|WayS app"cab'e and y|e|ds for the maximum
lomb momentum-transfer cross section can be written as impact parameter corresponding to touching collisi¢as-
ver , sumingb<<\)
og lmNe=4B9n(1 + 1/B). (8) . b\f'm-
Although the approach of13,14 is not rigorous, Eq(8) = The momentum-transfer cross section in touching collisions
shows very good agreement with numerical res{23,2] (assuming absorption for electrons and specular reflection for
up to B~5 (see Fig. 2 and agrees exactly, of course, with the grain$ is aC:wpg, so that
Coulomb scattering theory fg<<1. 2
The case of long-range scatterifjg>1) requires a new o= w1 - 28(Mb)], B <bizn (10)
physical approach. Such an approach was formulated in Ref. 0, B=Dbl2\.

[15]. The existence of the potential barrierlihy at 8> B opviously, we getb=a for electron-grain collisions ant
and the discontinuity iry(p) it causes play a crucial role for _o ¢, grain-grain collisions. FoB=<a/\ <1, the Coulomb

the analysis of collisions. As shown in Fig. 1, the dependencgcaering theory can be used to estimate the contribution
of the scattering angle on the impact parameter in the limit oty scattering. Comparing Eqg5) and (10) we get an ap-

long-range scattering3=30) has the following features: For roximate condition when the momentum transfer in touch-
close” (p<p-) collisions we havey—  atp—0, andx(p)  ing collisions dominates over that due to the Coulomb scat-

grows monotonically untip=p., where it diverges; for “dis-  tering. For both types of collisions, this condition is
tant” collisions(p> p«), the scattering angle decreases rap- 1
B = (a/N)A™, (11

idly, due to the exponential screening of the interaction po-
tential. _ _ o whereA =In(1/B8)>1 is the Coulomb logarithm. Recalling

It is convenient to consider the contributions from close 4t ,Bf?d~z(a/)\) and ﬁ$d~2d(a/7\) and sincez~ 1. the ef-
and distant collisions into the momentum transfer separatelyg of finite size can usually be neglected for electron-grain
As shown in Ref{15], the behavior ofy as a function of the ¢ jjisions, For grain-grain collisions, it is substantial pro-
normalized impact paramgtp_r‘p*' is practically mdependen'g vided zy=7|Z|(T./ Ty <1, i.e., for extremely high grain tem-
of B for p<p.. This self-similarity allows us to present this peraturesT > |Z|T

ok . . > o

contribution toh the cross sectiomormalized tomA%) as The effect of finite size is more important for attractive
=Ap-/\)% where A=2[g[1-cosx(§)]éd¢ and £=p/p-.  (ion_grain interactions. As in previous consideration, ion
The numerical factord can be determined by direct numeri- ,jection occurs if the impact parameter is smaller tpan

cal integration. It was found tha41.:0.81i0:0.1 forallgin o< p-, then Eq(3) has a single root and the OML theory
the rangeB;< B=500[13]. For distant collisions, the scat- .an'he applied yielding for attractigh=a for ion-grain col-
tering angle decreases rapidly in the vicinity pf. This lisions)

makes it possible to apply the small-angle approximation to ,
estimate their contribution to the cross sectiparmalized to pe=avl+28(\a) = poM-. (12)

m\?) as=2.0+4.0 In'B [15]. Combining these contributions oML ., [5 .y
and keeping terms up 19(1), we can write the momentum- At very largeg, however,p: "« exceeds the transitional

transfer cross section in the limit &dng-rangescattering as Impact parametep*oc)\ In_,B - That means that the .OML ap-

proach is no longer applicable, because for particles having
= p., EQ.(3) has multiple roots. These particles experience
‘TER/WV: 0.81(p./\)?+2.0, 9) gistgnt cqolgis)ions, WithrF; considerably Isrger tham,pand

therefore are not absorbed. Thus the absorption radius for

where (p:/\)?=In?B+2 In B. Expression(9) is valid for 8 very large 8 equals the transitional impact parametgg:

= ., and pointlike particles. Figure 2 shows the very good=p..

agreement between E@9) and numerical calculations. A The total momentum-transfer cross section for finite-size

sufficiently accurate and even simpler approximation isparticles consists generally of collection and scattering parts:

o5”=mpZ, which will be further justified in the next section ¢y =0+, The collection momentum-transfer cross section

where the finite size of the dust grain is taken into accountis o,=mp%. The scattering paf is given by Eq.(2), with
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tum, which enhances the ion current, and, thus suppress the
floating potential[23,25-2T.

. MOMENTUM-TRANSFER RATES

Momentum-transfer rates can be derived as follows: Let
us consider @estparticle(dust grain moving with a velocity
u; through a gas ofield particles(electrons, ions, or dust
graing having an isotropic velocity distribution functiofp.
On average, collisions with the field particles do not change
the direction ofu,, but cause its absolute value to decrease.
The equation of motion for the test particle is

FIG. 4. (Color onling The total momentum-transfer cross sec- mdd—ut = N,U«J v cosfo(v)vfi(jv +uy)dv, (14
tion, o, normalized tom\? (where\ is the screening lengthvs dt

the scattering parametgr for the attractive screened Coulomb po-
tential. The numerical results for different valuesagh are shown
to illustrate the role of finite particle radius

wheremy is the mass of the dust grailN is the number
density of field particlesg is the momentum-transfer cross
section, which is a function of the relative velocity=|u;

- . . . -ug, and @ is the angle between vectoug andv. Assuming
the lower limit of integration replaced by.. For a repulsive 5 maxwellian velocity distribution function for the field par-

potential collection is unimportant angk ~ o5~ 0s. The de-  icles and slow motion of the test partictée., U <ur,

Fenéj_ferncerz(ﬁ)l for anh:;utra(;:tive potentiafl is sr::c_)wn4inhFig.h4 WhereuTf denotes thermal velocity of the field particlese
or different values ofa/\. One can see from Fig. 4 that the get ff(|v+ut|)sz(v)[l—(vut/u%)cosa]. The symmetric

momentum transfer can decrease or incréaseomparison S .
with pointlike particle, depending on the values af\ and component of the distributiofy(v) does not contribute to the
resistance force. Introducing the momentum transfer rate

B. For sufficiently large8 (whenp.=p.), the total cross sec- . .
tion is os / A2 = (p. /\)?+2.0. ASZ;HOC’ the relative contri-  through du/dt=-vu, we get after integration over the

bution of distant collisions vanishes ang tends tomp?, the angles

collection cross section. At the same time, the momentum- 1 [2 Nu (7

transfer cross section is not very sensitive to the particle v=—\/j 5J v2o(v)exp- v2/2u$f)dv. (15)
size—the deviation ofrsy from o4 does not exceed-50%. 3 ™Myl Jo

Hence for practical purposes the total momentum-transf

cross sectiongy, can be approximated quite well by the

scattering cross section for pointlike particlgsqg. (8) for

B=5], or by mp? in the limit 8> B,=13.2[15,16. A. Electron-grain collisions

CO”C'Uding this SeCtion, we would like to comment on the For e|ectron_grain interactions usua|h9_e}d< 1 and the

applicability of the OML approach to calculate the ion col- standard Coulomb scattering approach is applicable. This

lection by grains. As we found above, OML is applicable yields

when poM-< p.. For a Maxwellian ion velocity distribution -

there arealwayssufficiently slow ions, for which this condi- Vog = (2v2w/3)(me/md)neuTeazzerd, (16)

tion is violated[24]. However, if this inequality is satisfied )

for most of the ions, corrections to OML are small. This Wheréne, m, and vy are the density, mass, and thermal

requirespO™* to be considerably smaller than for g=p9.  Velocity of electrons, and

Using our dimensionless parameters, we can rewrite this o
Aed: Zf

®Some special applications of this expression are given below.

e}

e 2In[1 + 4(\/a)*x?]dx - 22] e 2n(2x - 1)dx
1

condition in the form
0

V2zr(a/\) = In[zHa/N)]. (13) 17

_ is the Coulomb logarithm for electron-grain collisions inte-
[Note that we consider the case wh,é'ﬁzzﬁa/)x)zlS.ZJ grated over the Maxwellian distributigf28]. In the typical
It applies when the self-consistent potential distributioncase(2/z)(N/a)>1, we obtainAgq=2 In[(2/2)(\/a)] with
around the grain is well represented by a screened Coulombgarithmic accuracy. This result is an improvement of the
form [6,23]. For typical complex plasma parameters 1  Coulomb logarithmAgy~2 In(A/a) used in the literature
and 7~ 100, we get that OML is applicable fa/A<0.2, (see, e.g9.[29]). The derived momentum transfer rate can be
i.e., for most cases of interest. When OML fails, it overesti-employed to estimate the electron drag force in the subther-
mates the ion flow on the grain and hence underestimates theal regime for electron drift-.=myv. . Whereu, denotes
floating potential. Note that the ion-neutral collisions, whichthe electron drift velocity. Detailed investigation of the role
are neglected in our consideration, can also affect the graiof the electron drag force under different plasma conditions
charging. The collisions “eliminate” the ion angular momen-can be found in Ref{28].
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B. lon-grain collisions Vgd = (4V'ZT/3)ndvT Rc2> (23
For ion-grain interactiorﬂj often exceeds unity and then
the Coulomb scattering approach is not applicable. In th
caseBY=<5, Eq.(8) can be used. This yields

éEquat|ons(21)—(23) will be used in the next section to in-
vestigate the possible states of complex plasmas.

vig = (2\2/3)(m/mg) v 222 Ajg, (18) IV. PHASE DIAGRAM OF COMPLEX PLASMAS
wheren;, m, andv; are the density, mass, and thermal ve- The grain charges in complex plasmas, as well as the
locity of ions, and ' plasma screening length, are not constant. This is why the
strength of the electrostatic coupling between the grains can
* be easily changed experimentally over a fairly wide range
Ajg = ZZJO eIn[1 + 27 {(\/a)x]dx (19 (by varying, e.g., the discharge conditiof0]). This is a

major distinguishing feature of complex plasmas compared
is the modified Coulomb logarithm for ion-grain scattering to usual plasmas, where the ion charges are normally con-
[13,14 integrated over the Maxwellian distributidin Eq. ~ stant(single. The latter implies low coupling strength in
(19) we took into account that>1]. In the limit of smallg¢ ~ usual plasmasalthough one can, in principle, obtain fairly
or (1/zr)(N/a)> 1, the result reduces to that of the CoulombStrong coupling in non-neutral plasmas, e.g., ionic crystals
scattering theory. We have theng=2In[(2/zn(\/a)],  [31D. In complex plasmas, one can observe the transitions
which is considerably smaller than the valuéNfa) used from the disordered, weakly coupled to strongly coupled
preV|oust[29] In the opposite limit of very large scattering states and the formation of ordered structures of grains—

parameters,8Y> B,=13.2, the total momentum-transfer plasma crystal$1-9,32-3§.
Cross section can be taken@as= wp*, with a good accuracy Another major dlstlngu_lshmg feature of complex plasmas
as shown above, whegg ~\ In /5’ This yields is that the overall dynamical time scales associated with the

dust component are relatively lor{dust plasma frequency
Vg = (8v’%/3)(m~/md)n-v pz_ (20) ~10-100 H3z [1,3,37. Furthermore, the grains themselves
' ! Tt are large enough to be easily visualized individually. All to-

The momentum-transfer ratg&qs. (18)—(20)] were recently gether t_his makes it possible to investigate phenomena oc-
used to estimate the ion drag foré&=myuqu;, in complex ~ curring in different phases at the most fundamental kinetic

plasmas with subthermal;<v+ ion drifts). The details can €€l [5,6,30. Although there is always some damping intro-
be found in Refs[13-1§ ' duced into the complex plasma systems due to neutral gas

friction [3], the resulting damping rate is many orders of
_ ) o magnitude smaller than that in colloidal suspensions, and it
C. Grain-grain collisions can easily be made much smaller than the major eigenfre-
For grain-grain interactions, the standard Coulomb scatduencies of the dust dynamics. Hence the most interesting
tering approach can be employed only for extremely smalflynamical phenomena have usually enough time to evolve
grain charges and/or extremely high grain energies, so thabl-

dd—zd(a/)\)<1 In this situation, we have Let us dwell upon these features of complex plasmas in
detail.
Vad = (4\/%/3)” @, a°ZiA gq, (21 Figure 5 represents different “phase states” of complex

plasmas as functions of the electrostatic coupling parameter
whereng andur, are the density, and thermal velocity of the I'es and the mean grain separatidn normalized either to
dust grains, and the grain sizea or to the screening length (“finiteness
parameter’a=A/a and “lattice parameterk=A/\, respec-
o0 % tively). The parametelf'zs=I" exp(—«), which characterizes
Agg= de e[ 1 +(\a)>*]dx~ szf e In(2x-1)dx  the “actual” coupling ratiqpotential energy/kinetic energy
0 1 at the average intergrain distance, is expressed in terms of
(22)  the (Coulomb coupling scaleI'=e?Z%/AT, (note that in
terms of I' and «, the thermal scattering parameter,3$d
is the Coulomb logarithm for grain-grain collisions inte- =21'). The use ofl'zs implies that the calculations should
grated over the Maxwellian distribution. The form of this be representative to some extent of other types of “similar”
expression is similar to that of EGL7). If (1/zg)(A\/@)>1, interaction potentials, to@viz., with “similar’ long- and
the Coulomb scattering approach is applicable and we havéhort-range asymptotesThe vertical linex=1 conditionally
Agq=21In[(1/zg)(\/a)] with logarithmic accuracy. However, divides the diagram into weakly screené@oulomb and
the limit of long-range scatteringgl®> 1, is more typical for strongly screenedYukawsg parts. In Fig. 5, we have set
complex plasmas and then the analogy with hard-sphere cok/a= a/«=100, which is typical of complex plasmas stud-
lisions can be used. According to E(), the momentum ied so far, but there is in principle a wide range of variation,
transfer cross sectiowS=7R31+0.23(1+Ry/\)], with  depending on grain size and plasma conditions chosen.
R, taken from Eq.(7). Since Ry/\ considerably exceeds Crystallization in complex plasmas and formation of dif-
unity, we can approximately write ferent lattice types is a widely observed process

056405-6



MOMENTUM TRANSFER IN COMPLEX PLASMAS PHYSICAL REVIEW E7Q, 056405(2004)

o=Aa 10*
10’ 10° 10° " CRYSTAL

2
.)

~ i Vi
e _
10": ........... I E ) ‘s\\
i v 4 VI v 1
o B 4 . .
10 0.1 1 10 10 0.1 1 10
K=A/A K=A/A
FIG. 5. Phase diagram of complex plasmagligs, ) param- FIG. 6. Typical contours are shown of constant ratios of the

eter space. The vertical dashed linecatl conditionally divides the momentum transfer rates in grain-grain collisions relative to grain-
system into “Coulomb” and “Yukawa” parts. Different states are background (neutral gap collisions. The values vyg/ vng
marked in the figure. Regions(V) represent CoulomiYukawa) ~ =10?,10,1,10% and 102 are depicted in a phase diagram for com-
crystals; regions I(VI) are for Coulomh(Yukawg) nonideal plas- plex plasmas inI'gs, ) parameter space. The parameters used in
mas; regions llI(VII and VIII') correspond to CoulombYukawa) the calculation are given in the text. Also shown in the figure are the
ideal plasmas; note that in the region VIII, the pair Yukawa inter-lines corresponding to crystal meltirigolid line) and the boundary
action asymptotically reduces to the hard sphere limit, forming aetween ideal and nonideal plasn{dashed ling

“Yukawa granular medium”; in region |V, the electrostatic interac-

tion is not important and the system is like a usual granular me¢rve the electrostatic interaction is too weak and the mo-
dium. For further explanations, see text. mentum exchange occurs due to direct grain collisions, i.e.,

[32-35,38-4D From the phenomenological point of view, We have a usual granular medium where charges do n(gt play
the condition for crystallization is basically determined byany noticeable role. This line corresponds 67
the well-known Lindemann criterio41,43. The resulting =(a/N)Agq” [see Eq(1D)].
melting IineF“E"S(K)zlod1+K+§K2)' is shown in Fig. 5 by The upper dotted curve marks the transition boundary for
the upper solid line. a very interesting state, which we have called the “Yukawa
Further insight into the possible phase states shown igranular medium.” Here the “mean” scattering parameter for
Fig. 5 is obtained from our above results for the momenturrgrain-grain collisions exceeds unitg?®> 1) and, hence, the
transfer cross section for grain-grain collisions. This ap-strongly screened electrostatic interaction reduces asymptoti-
proach allows us to obtain a clear physical classification ofally to the hard-sphere limit with radid®=\ In(2,8$d).
complex plasmas. The dashed line indicates the “transition” Next we investigate complex plasma properties in terms
between “ideal” and “nonideal” plasmas. We determine thisof the competition between the momentum transfer in mutual
transition from the condition'a/ w=(47/3)~13A, which im-  grain-grain collisions and the interaction with the surround-
plies that the characteristic range of grain interaction  ing medium.
terms of the momentum transfeés comparable to the inter- Complex plasmas can be “engineered” as essentially a
grain distancein terms of the Wigner-Seitz radiuysAbove  “one-phase fluid’(when the interactions between the grains
this line, the interaction is essentially multiparticle, whereagdominate, or as a “particle laden two-phase flo@when the
below the line only pair collisions are important. This refinesinteractions with the background medium are of similar or
the standard condition used to define a “boundary” betweegreater importange\We have illustrated this by plotting con-
ideal and nonideal plasmags~1. From the thermody- tours of constant ratios of the grain-grain/grain-background
namical point of view, this line determines the limit of em- momentum transfer ratesyy/ v,q, in the (I'gs, «) diagram in
ploying expansions of the thermodynamical functigasgy.,  Fig. 6. The characteristic momentum-transfer rate in grain-
virial expansion over the(small) coupling parameter. It is grain collisions is given either by E@21) or Eqg. (23). In
important to note that for a Yukawa potentials well as for complex plasmas, the exchange of momentum with the back-
any monotonic interaction potentjalthermodynamics pre- ground medium is mostly through grain-neutral gas colli-
dicts that there is no liquid-gas phase transitioe., the sions,
critical point occurs affy=0 for such systemsThis is dif- —
ferent if the pair potential is not monotonic, e.g., a long- Vnd= 5(8v’277/3)(mn/n1d)a2nann,
range attractive component added to a repulsive electrostatic
potential exists, as has been suggested by some agtiears Wherem,, n, and vy are the mass, density, and thermal
e.g., Refs[1,6,10). So far, however, there are no reliable velocity of neutrals, respectiveli3]. The value of the nu-
experiments reporting on the observation of, e.g., the coexmerical factor 6=1+w/8=1.4, corresponding to diffuse
istence of liquid and gaseous phases, or other indications ofgcattering with full accommodation, is chosen in accordance
first-order phase transition in gaseous complex plasmas. with recent experimental resuli44]. For the calculations we
The regions where the system is similar to a granulause the following parameters: Grains of radassl um and
medium are also shown in Fig. 5: Below the lower dottedmaterial mass density of 1 g/érin argon plasma at neutral
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gas pressure 100 Pa, room-temperature ions and netiralsin liquid-solid phase transitions. Plasma crystals give us an

~T,~0.03 eV, anda/\=10"2. For the momentum-transfer
rate, we use Eq23) at 839> 1 (upper symbols in the figuye
and Eq.(21) at p3%<1 (lower symbols. In the transition

excellent opportunity to study wave phenomena relevant to

transport in usual crystalse.g., thermal conductivijy—

nonlinear mode interaction, umklapp processes, phonon scat-

regime 8%~ 1, none of these approximations is applicabletering on defects, etc. at the kinetic level. Also, complex
and we have therefore simply linked the two regimes byplasmas are particularly suitable for kinetic investigations of

dotted lines.

elementary processes in fluidd45]. This suggests that we

Figure 6 shows that there is a broad range of parametergyparently have a powerful new tool for investigating fluid
where complex plasmas have the properties of one-phase flfjp\ys on effectively) nanoscales, including the all-important

ids (vqq/ vaqg=>1) and those of two-phase fluidgy/ vaq~ 1.
In the extreme limit of very smalbyy/ v,q, We can also, of

course, have “tracer particles” in the background med|umdnot been accessible for studies so far.

which provide practically no disturbance to the backgroun

flow. Taking into account that a number of plasma param
eters(e.g., the neutral gas pressure, plasma screening leng

and the ratica/\) can be varied relatively easily within ap-
proximately one order of magnitude, most of the possibl
states can be investigated.

V. DISCUSSION AND CONCLUSIONS

transition from collective fluid behavior to individual kinetic

behavior, as well as nonlinear processes on scales that have

In this paper, we investigated various modes of momen-

th transfer in complex plasmas using a screened Coulomb

potential for the dust grains: electron-grain, ion-grain, and

eqrain-grain collisions. Electron-grain and ion-grain collisions

give rise to the so-called electron and ion drag forces, which
can influencegor even determinegrain transport in plasmas.

The consideration of momentum transfer in grain-grain col-

lisions allowed us to obtain a clear physical classification of

There are a number of reasons why complex plasmas atbe possible complex plasma states. We showed that different
of great importance for fundamental physics. For instance;phases” are possible, including crystalline, ideal, and non-
one can study the kinetics of crystallization and melting inideal plasmas, and two types of granular media. The bound-
real time. The nucleation and the subsequent growth of crysaries between these states were defined and summarized in a
talline structures in complex plasmas look very similar to(samplg phase diagram. We also showed that complex plas-

usual crystallization experiments.g., in semiconductoyslt

mas can exist in a broad range of dynamical states- and

is reasonable, therefore, to conclude that space- and timéwo-phase fluids, as well as tracer partigleshis broad
resolved investigation of elementary processes accompanyange of states that is accessible for complex plasmas and the
ing the nucleation and growth of plasma crystals can be verpossibility to study a variety of processes at the kinetic level
useful for understanding some basic microscopic processesake these systems extremely attractive for further research.
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